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Abstract-This investigation deals with the steady propagation of a fatigue crack in a thin plate.
subjected to cyclic tensile remote loading. The problem is analyzed a\.'COrding to a Dugdale model
of the fracture process lone. Material stretches periodically in the fracture process zone prior to its
failure. The effect of crack closure is considered in the analysis. Unlike previous work. our study is
based on a constitutive relation of the linear work-hardening for material in the fracture process
zone. The criterion of total accumulative plastic work is adopted for determination of the growth
rate of the fatigue crack. Theoretical results thus obtained are compared with e1{perimental data.

INTRODUCTION

Prediction of fatigue crack propagation speed under cyclic load is an important and difficult
task in engint-ering. Several authors have made contributions to this area. For the problem
of fatigue crack growth under tensile loading. Liu (1961) found the crack length increment
per cycle dl/dN to be proportional to the square of the stress intensity factor mnge. &K.
McClintock (1963). Rice (1965) ~tnd Weertman (1966) found that dlldN could be expressed
as the fourth power of &K. as proposed by Paris and Erdogan (1963) bascd on an experi­
mental study. Rice (1967) pointed out the existence of a reverse plastic zone in front of a
stationary crack during the unloading process. In the fatigue analysis. the reverse plastic
deformation at the crack tip can also be induct..'d by unloading. Etber (1970) in his experi­
mental study. discovered the beh.tvior of crack closure induced by the residual plastic
stretch near the surface of the fatigue crack. Newman (1976) studied the behavior of crack
closure by a finite element analysis. He employed an elastic-perfectly plastic model in his
analysis and found that the transient behavior of crack closure was limited in the first few
cycles of oscillation. Budiansky and Hutchinson (1978) first analyzed the steady crack
closure behavior in a quasi-static plane stress problem. based on a Dugdale model of the
frncture process zone with a perfectly plastic constitutive retation. Huang and Li (1989)
also analyzed this problem and studied the spc.-ed of fatigue crack propagation dl/dN.
based on the criterion of total accumulative plastic work. The problem of fatigue crack
propagation with an in-plane shear mode deformation was analyzed by Lardner (1968).
while the problem with an anti-plane shear mode was investigated by Huang (1988). A
concept similar to the reverse plastic deformation was used in their study.

In this investigation. the criterion of total accumulative plastic work for material failure
is employed with a modification that the effect ofwork-hardening of material in the fracture
process zone is considered. For convenience of analysis. it is assumed that the constitutive
relation in the fracture process zone can be represented by a linear. work-hardening relation
between the traction on the boundary of the fracture process zone and the stretch of
material prior to its failure. Theoretical results based on this model will be compared with
experimental data.

ANALYSIS OF STATIONARY CRACK

Consider a plane stress problem of an infinite body containing a semi-infinite crack.
subjected to periodic tensile mode deformation. The crack is located on the negative real
axis. as shown in Fig. I. The stress intensity factor K varies periodically between Km•• and
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Fig. I. Geometry of the problem for K ... K.... ~ O.

Kmin ~ O. When K = Kma• the crack is opened and there is a fracture process zone of the
Dugdale type at 0 ~ x ~ w. The analysis given here is based on the assumption of small
scale yielding. The material in the fracture process zone obeys a rigid-plastic Iinearly-work­
hardening rel.ttion

U,.(x) = Uy +At'(X). (I)

where u.(.\') is the normal stress acting on the boundary of the fr.tcture process zone. t'(x)
is the vcrtic.t1 displacement on the boundary. Uy is the yielding stress corresponding to the
residual stress for the tff.lnsition from a continuum to the fracture process zone. and A. is
the work-hardening panlmeter which is regarded as a material constant.

In the strip yielding model. the material outside ofthe yielding zone is elastic. According
to the Dugdale model. the maximum stress intensity factor at the crack tip during loading
can be cxprcssl.:d by

The vertical displacement of the boundary of the fracture process zone is

2 r'" f2 Kma• r:-=
v(x) = - nE JII Ur (t)f(I.X)dl+2Vn Tyw-,\"

where E is the modulus of elasticity and f(l. x) is given by

I~+ ;;;-::);/
f(l•.\') =In c:-. r:-='

VW-1-V W - X

(2)

(3)

(4)

The stretch in the fracture process zone is defined by c5(x) = 21.'(X).
With substitution of eqn (I) into eqn (2) and employment of the following dimen­

sionless quantities

.::_.:..,- .
IV

1
t =- .

IV
~(e) = 2t.'(x). p. = 2£>11 ;••

Co uy

eqns (2) and (3) become

(5)
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~(e) = -ywl' [I +1I~(r)]g(r,e)dr+2Y~~,

where Ju is the crack opening disphlcement at the crack tip, i.e. c50 = c5(O) = 2ll(0), and

g(r,e) =Inl~=r+E~I·
~-~

(6)

(7)

(8)

Wilh any fixed value of II, ~(e) can be solved by eqns (6) and (7). In the solution, the
value of ~(r) is expressed by a piecewise linear interpolation function of r such that eqn
(6) can be discretized into a set of linear algebraic equations, from which the value of&(r)
c.m then be solved ify and ware known. With the use of the solution of&(r), the new value
of w can be determined by eqn (7). By this iterative procedure, the solution of ~(r) and w
can be obtained with satisfactory accuracy. The value of y can be determined by the
condition ~(O) = I, which involves another iterative process. The numerical results for
Jt = 0.1,0.2 and 0.3 are shown in Fig. 2. The values of}' and w for different values of II are
also tabulated in Fig. 2. The stretch of material in the fracture zone ~(e) is found to be
very close to the analytical results

(9)

obtained by Budiansky and Hutchinson (1978) for the special case 11== O.
Differentiation of eqn (6) with respect to egives

II (e) = - d~(e) =.-1!!!- { f' [I +p&(r)]jt=; dr+ _I_}. (10)
de fi=e Jo r-e ~

It can be easily verified that 11(0) = 00 and 1.(1) = O. The values of -(d~(e)/de) at
K = Km•• are shown in Fig. 3.
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ANALYSIS OF GROWING FATIGUE CRACK

When the stress intensity factor K decreases from Kma• to K<onl' the opened crack begins
to close. For a further decreuse in K. the closed region grows. When K = Kmin ~ O. the
closed region is in h ~ x ~ O. where h < O. There is a reverse plastic zone within the fracture
process zone in 0 ~ x ~ (I. as shown in Fig. I. If Kmin = O. b -- - 00. A mi)l;cd boundary
value problem of this type can be analyzed by the complex vuriuble technique.

Let the stretch in the fracture process zone at K = K.n". be denoted by 15.\1. the stretch
in the reverse plastic zone at K = Kmin be denoted by Jm and the total residual plastic stretch
at the crack tip be denoted by t5R • When the value of K decreases to Kmin • the plastic stretch
in the c1usticully unloading zone a ~ x ~ w has the same value as that under K = Km•• due
to the rigid plastic hehavior of the model (Fig. 4).

Let us study the behavior of material points in the reverse plastic zone. During loading.
the stress-stretch relation at any material point in the fracture process zone is shown by the
line oaO in Fig. 5. When K =Km••• the stress and stretch at the material point reach
maximum values at point O. During unloading. the stress in the reverse plastic zone
dt.'Creases. but the stretch remains unchanged until the stress reaches point C. When the

a( x) aMI x)
2=-2-

w
Oyl x) • Oy+A.Yl x)

(a)

b

OylX) =-Oy+A.y(x)

(b)

w

Fig. 4. Growing fatigue crack for (a) K"" Am••• and (b) K "" Km,n ;;l!o O.
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stress reaches point 0, compression begins. As the stress reaches point C. the reverse plastic
stretch occurs. If the unloading process continues. both the stress and stretch decrease. This
procedure can be illustrated by the line CD in Fig. 5 with the relation

a.(x) = -ay +,1,v(x). (II)

When K = K,nin. point D is re:.tched. As the reloading process starts. the stress-stretch
relation follows the line DA. where the stress increases but the stretch remains constant.
When the stress reaches point A. the behavior of the material point in the reverse plastic
zone will follow a path repeating the process described previously. Therefore. as the crack
grows under a cycle of the periodic loading. the material points in the reverse plastic zone
follow the loop ABCD. Obviously, on the line BC, the stretch is ~M' while on the line AD.
the stretch is ~,"' For the material point at the crack tip, DM = ~o and ~'" = ~R' The behavior
of material points in (- 00, 0) can always be described by the line AD, while the behavior
of material points in (IX. I) can always be described by the line BC.

( I) The ca.~e K'"i" = 0
The state at Kmin = 0 can be analyzed by a boundary-value problem illustrated in Fig.

6. There are dislocations ~ = ~R along ( - 00.0). compressive post-yielding stress in (0.0)
and a dislocation ~ = ~M in (0, w). It is expected that layl ~ l-ay+,1,~R/21 in (-00,0). with
ay vanishing monotonically as x- -00. It is also anticipated that -ay+,1,~m(IX)/2~

a. ~ ay in (0. w). These requirements will be shown later. Finally. the stresses arc required
to be bounded. These conditions suffice to determine values of e5 R and IX.

In Budiansky and Hutchinson's (1978) work the complex Muskhelishvili potentials
q,(:) and "'(:) were used for analysis. The condition for stress continuity across the x-axis
permits an elimination of "'. Thus stresses can be written in terms of q,(:). q,(z) and their
derivatives by

y

====!::==~f--£--iC>--.....c._--<>--x

o a w

Fig. 6. Boundary values for K = Km;. = O.
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(1.,+(1,. = 2[cf/(=)+~'(z)J,

(1,.-it.,,. = cf/(=)+q,'(Z)+(:-Z)~"(Z).

(12)

(13)

In the case of plane stress, the displacements u and v in the x- and y-directions satisfy

E : (u+it·) == (3-v)tjJ'(z)-(1 +v)[tjJ'(Z)+(:-Z)~"(Z)],
llX

(14)

where v is Poisson's ratio. On the x-axis, z == ; and t .••. =au/ax = O. Equations (13) and
(14) are reduced to

(15)

and

(16)

let us define 4> = f/J'. It follows from eqns (15) and (16) that the following conditions on
4> must hold along the x-axis:

4>. -<f) == 0 for x < 0,

4>. +4>. = - ay + ).(;m/2 0 < .~ < a,

iE di5"
<[)+ -4>_ =4' d~- a < x < w,

x> w. (17)

By means of a technique similar to that given by Budiansky and Hutchinson (1978), the
general solution for the problem of eqns (17) can be obtained:

J I i" ., Jx(a-:() d:(:-a)<f)(:) == -2 [-ay +....(jm(x)/2} x
7t u x-:

E fit' Jx(:c-a) d<5M (x) d E<5R+- -- X+--.
87t" x-z dx 87t

rt is convenient to introduce the following dimensionless quantities:

Equation (18) can be rewritten in a dimensionless form, as

With the integral

(18)

(19)

(20)
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f J~(:~e) de =x[JC(C -tX) -C+ ~J. for' out of (0, 2), (21)

and the requirement that the stresses (1.0 are bounded at' = 0 and 2, eqn (20) yields

and

Elimination of 6 R from eqns (22) and (23) leads to

7[2 7[ C" 6",(e)de 1 II !I(e)de

T=2 1l Jo Je(tX-e) +2yw " Je(e-tX) ,
where!l(e) is given by eqn (10).

With the use ofdimensionless quantities in eqn (19), the discontinuity in the potential
F across the x-axis can be written as

F - F = xi d4...(e) f,or 0 < J: < N.

.. - yw d~ .. '"

From eqns (20) and (25), it is found that

where !2(e) is defined by

Elimination of AR from eqns (22) and (26), with the use of eqn (24) gives

f( J:) jJ:( J:)[ i" 6",(t)dt III !,(t)dt ]' .. = .. tX-.. Jl"lW +-
- 0 jr(tX-t)(t-e) 7[" Jr(r-IX)(t-;) .

Equations (24) and (28) are the governing equations of the problem.
It can be shown from eqn (28) that

and

Hence, the stretch slope at e = tX is continuous.
In the contact region (- co, 0), the boundary value problem becomes

(25)

(26)

(27)

(28)

(29)

(30)
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(31)

Therefore, use of eqn (20) and elimination of Aa from eqn (22) yield

(32)

It can be shown through eqn (32) that

(1v(O)/(1y = - 1+ pA",(O).

Therefore. the stress at ~ =0 is continuous.
It can be verified easily byeqn (32) that

,lim ((1.,,) == o.
~ .. - ''X;' (ly

(33)

(34)

The numerical calculation shows that the magnitude of(1,. from e== 0 to e== - 00 decreases
monotonically. Hence. the contact stress in (- 00. 0) satisifes the condition 0 > (1.vI(1y ~

-I +jlAR• or l(1vl ~ 1-(1y+A.<)R/21.
With the elimination of All from eqns (20) nnd (22). the potential function on the real

uxis with:x < e< I can be written as

- .. !.- j~-a f.1 Jr_. _1-f1(r)dr for a < e< 1. (35)
2yw e • r-a r-e

Thus. in the ektstic unloading zone (a. I), the stress can be determined by

( J;-ex) 1 J;·-ex i'g; 1= - 1- -- ---p ---A",(t)dre 1t e u a-t r-e

It can be verified that

{ ( J;-ex) IH-a i·g;A",(r)(1 (a.)/(1y == lim - 1- -- - - --p - --dt
y ~-, e 1t r 0 a-r r-e

1 J;-exf.l~ 1 }--, -- ---;fl(r)dr == -I+p(\",(a.).
yum" e , r-ex r-.,

Therefore. the stress at e== IX is continuous.

(36)

(37)
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Fig. 7. Boundary values for K = Km,n > O.

(ii) The case Kmin > 0
The boundary value problem at Kmin > 0 is illustrated in Fig. 7. It is found that all of

the boundary conditions and the behavior of material points in different regions are the
same as those in the case of Km,n = O. except that there is a contact region (b.O) on the
negative real axis. With an introduction of the dimensionless quantities in eqn (19). the
boundary conditions can be written as

F.. -F

F.. +F_ =0

F.. -F_ =0

F .. +F = Jt![ - I +JLl\m(~)J

Jti dl5M= -~

yw d~

F .. -F. =0

for e< fl.

II < ~ < O.

0< e< (x.

e> I. (38)

where {I = hilI'. By means of the technique used by Budi'lnsky and Hutchinson (1978). the
solution of the (lroblem can be obtained. i.e.

The boundness of the stress rT}, at , = II. 0 and (X leads to

and
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With the use of

eqn (39) yields
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(43)

Equations (40) and (44) are the governing equations of the problem.
It ean be shown that

and

Thus, the stretch slope is continuous at ~ = 0 and e= (x.

In the region (P,O), the boundary value is

(45)

(46)

(47)

With the elimination of A and R from eqns (39), (41) and (42), eqn (47) Ieuds to

(ly

p < e< O. (48)

It eun be shown that

(I}.(P) = 0,

(I.•(O)!(ly = - I+pA",(O).

(49)

(50)

Therefore, the stresses at e= Pand e= 0 are continuous.
[n the elastic unloading zone (lX, 1), eqns (47) and (48) still hold. With the elimination

of A and R from eqns (39), (41) and (42), eqn (47) also yields
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It can be shown from eqn (51) that

(f.~(a)/(fy == - I +ItA/,, (a).

Thus, the stress at e=a is continuous.

(51)

(52)

(iii) Numerical results
Equations (28) and (44) can be integrated by means of the Runge-Kutta method. Here

the mnge of integration will start at e= a with negative increments ofeand will terminate
at e= O. The initial values are f2(a) = fl(a) and A",(oc) == A.\I(oc). It is found that the
continuity condition f2(0) == 0 is always satisfied no matter what value a. has. Therefore the
values of a. have to be determined by eqns (24) and (40).

Unfortunately, the value of f2(e) at any point in (0, a) depends on the value of An/(e)
in the entire interval. Therefore, an iterative process is necessary for the determination of
AmC';). First of all, an initially tried function for A...(e) can be assumed. Equations (28) and
(44) can then be solved for the new function. Am ({). This iterative process continues until
a prescribed tolerance is reached. This method is found to be so effective that the absolute
tolerance of Am (';) can be less than 10 -, after three iterutions. Another iteration is required
for determining a and fl. In the case of Km•n > 0, the values of R can then be found
numerically through eqn (42).

In eqns (28) and (44), some integrands are singular or ill-behaved at t = 0, a. and/or
e. Special techniques such as change of variables. piecewise parabolic interpolation.
Simpson's rule with unequal spacings, etc. must be employed for evaluation of integrals.

In Fig. 8, the relations between a. and fl for different values of Jl are shown. The vertical
dashed lines denote the asymptotic lines of the curves as fl - - 00. The values of oc as shown
on the dashed lines correspond to the case of R =O. The case It == 0 agrees with the results
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Fig. 9. Stretch in the reverse plastic zone (JI = 0).

0.8

obtained by Budiansky and Hutchinson (1978). All curves terminate at the origin Ot: = 0
and p=O.

Figures 9-12 show the plastic stretch ~m in the reverse plastic zone for different values
of It and R. The solid circles denote the boundaries of the reverse plastic zone for different
values of R. Dashed vertical lines pass through the solid circles. The corresponding values
of Ot: arc also indic.. ted on these lines. It cun be seen that the stretch slope is continuous at
e= Ot: und e= 0 und the length of the reverse plastic zone decreases as the vulue of R
increases.

SI'EEl> OF FATIGUE CRACK PROPAGATION

For any inlinitesim'll materi..1clement. the total accumulative plastic work (TAPW)
is the sum of the 1()lIowing PilrtS: (i) the crack opening plastic work due to the propagation
of the cruck: and (ii) the accumul'ltive oscillation plastic work induced by the oscillatory
motion of the bound.. ry of the reverse plastic zone in 0 ~ x ~ a. The ratio of the TAPW
and the inlinitesim.t1length of the element is regarded as the "density of the total accumu­
lutive pklstic work" applied to the material point. The criterion ofTAPW stutes that failure
at a material point occurs as the density of TAPW of the material point reaches a certain
critical vulue We' For fatigue crack propagation, the material point is at the crack tip.
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Fig. 10. Stretch in the reverse plastic zone (JI = 0.1).
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The magnitude ofthe density ofcrack opening plastic work at a material point increases
gradmllly as the crack tip propagates toward the material point. This magnitude attains its
maximum valuc whcn the stretched length of material in the fracture process zone reaches
.l maximum. It is

(53)

With the usc ofdimensionless quantities, thc density ofcrack opening plastic work ..t crack
tip W, c..n be cxpressed ..s

.( II)= flyi>n 1+ '2 . (54)

2
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Fig. 12. Stretch in the reverse plastic zone (II = 0.3).
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The oscillatory plastic work at a material point is the accumulation of the plastic work
applied to the material point as it moves backward through the entire reverse plastic lone.
For each cycle of oscillation. the crack tip propagates forward by a distance dJ/dN. Hence.
the plastic work applied to the material point within 0 :=:; x :=:; a through one cycle of
oscillation can be approximated by

(ly

dWz = 2 dT [15,,,(x) -c5,"(.~)]d~.

dN

(55)

where the factor two stems from the unloading and reloading process in each cycle. The
density of the total oscillatory plastic work at the crack tip is therefore

(ly ["

W2 = 2dT Jo [c5",(x) -c5(.~)] dol'.

dN

(56)

Note that W2 is independent of A. the coefficient of linear work-hardening. because the
hardening effect will be cancelled in the loading and unloading process. In fact. the quantity
d W, in eqn (55) is the magnitude of the area of the loop ABeD as shown in Fig. 5.

The criterion ofTAPW requires

(57)

Substitution of eqns (54) and (56) into cqn (57) leads to

(58)

Use of dimensionless quantities transforms eqn (58) into

(59)

where

The quantity We in eqn (61) can be expressed as

w =Kl
e E'

(60)

(61)

(62)

where Kr is called the fatigue fracture toughness. When Kmu = Kmin = Kr• the value of W2

is required to be zero. Thus
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WI = O'yc5r(1+ ~) = We'

where c5r and Ilr are defined by

and

where ')Ir is defined by

From eqn (63), eqn (61) becomes

With the introduction of the following quantities:

I+~
2

m=--,
1+~

2

k _ Km..
", - Kr '

and

T=0'~(1 +,Jlrl2) I,
7CK{ClJ

879

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

the dimensionless speed of fatigue crack growth is then obtained from equations (59) and
(67) as

(73)

It is seen that dTtdN approaches infinity as Kmao approaches Kr• Let 6.k = (Kma• - Kmin)!Kr.
Equation (73) can also be expressd in terms of 6.k and R as
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R

Fig. 13. F~(R) curves.

When kilt « I. the fatigue cr,lck speed can be <lpproxim,lted by

dT 4
dN = F 1(r){6.k) •

where

1.0

(74)

(75)

(76)

when kllt « I. Y!Yr <lpproaches a constunt. Hence. the fourth power law for the steady speed
of fatigue crack growth is obtained.

Figure 13 shows the relation between F!(R) and R. When R = I. the value of F!(R)
vanishes. When R =O. the slopes of the Curves are equal to zero. This phenomenon is
caused by the constant value of the oscillatory plastic work for R < O. which is equal to
the value of F!(O) for R =O. This problem will be discussed later.

For line<lr work-hardening materials, the relations of the parameters It, y. w with
respect to material constants E. (ly. Krand loading p<lr<lmeters Km... R. etc. have no concise
analytical forms. However. their numerical relations can be found empirically. From the
table shown in Fig. 2, it is found that the relation between 'I and /l is nearly linear. Therefore,
I'(/l) can be written as

I
Y(/l) =1'(0) + oj [y(O.3) - y(O)lJt = 2+0.992lt.

From eqn (5), another relation between 'I and Jt is found to be

Combination of eqns (77) and (78) leads to an equation for solving It:

(77)

(78)
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Fig. 14. Comparison of the theoretical fatigue crack speeds with the experimental values for
2024·T3 alloy. (Ty =40 kg mm-: and hr = 130 kg mm - .•,:.

, K~•• ;"
0.992W+ 2jl- -'E- = O.

11"
(79)

Arter jl is solved. y and CtJ can be determined by the interpolation according to the numerical
relation as shown in the t'lble of Fig. 2. The value of (50 can then be determined by eqn (5).
In the spt:cial case of Km.. = Kr• this method determines the values of jlr. Yr. Wr and Jr. With
eqns (68)-(71), F.(km ) can be found. Function F2(R) can be determined numerically by
using Fig. 13. From eqns (72) and (73) the speed of fatigue crack propagation can then be
determined.

As an example. the value of dl/dN is calculated with respect to Km... Our theoretical
speeds of fatigue crack growth are compared with the experimental data given by Broek
(1981) for 2024-T3 aluminum alloy. Material constants are l1y = 40 kg mm - 2, Kr = 130 kg
mm- li2, E = 7000 kg mm - 2. The value of;" is selected to be 300 kg mm -l. The relations
between dl/dN and Km.. are shown in Fig. 14, where the dashed lines denote the results for.
A. = 0 corresponding to the case of no work-hardening. The solid lines denote the results
for;" = 300 kg mm -l. It is seen that the solid lines agree with experimental data better than
the dotted lines as long as the value of Km.. is not too small. When Km•• decreases, all solid
lines approach the corresponding dashed lines asymptotically.

Brock (1981) observed from the fatigue test of aluminum alloy that the fracture
surface could change from a tensile mode to a shear mode during the growth of a fatigue
crack. A state of plane strain is associated with the tensile mode and a state of plane stress
is associated with the shear mode. Since our theory is based on the assumption of plane
stress. the theoretical results given in this paper check well with the experimental data
corresponding to sufficiently high values of Km•• where the fracture mode is governed by
the state of plane stress.

DISCUSSION AND CONCLUSION

Rice (1967) pointed out that for most metals. the experimental values of the exponential
constant in the power law for the speed of steady fatigue crack growth lie between two and
four. depending on the portion ofdl/dN versus ~k curve. However. Weertman (1966) found
that the theoretical prediction based on the TAPW criterion and the Dugdale model always
leads to Paris' fourth power law of fatigue crack speed at low values of Km... Huang and
Li (1989) proposed that the theory can be improved by considering a model with a
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complicated constitutive relation for the deformation of the fracture process zone. Work·
hardening behavior of material is a possible constitutive relation for the improvement.

The authors of this paper employed a modified Dugdale model by including the effects
of either the cyclic softening or Baushinger effect. They found that these effects merely lead
to a shift of the dl/dN versus Kmu curves in the vertical or horizontal directions. The
modified Dugdale model with linear hardening effect. as employed in this analysis. can alter
the shape of the dl/dN versus Kmu curves for sufficiently large values of Kmu • When the
value ofkm decreases. the dl/dN versus Kmu curves based on our model approach asymptot­
ically those based on the Dugdale model with an ideally plastic constitutive relation of the
fracture process zone. A more complicated and realistic constitutive relation for the material
behavior in the fracture process zone may be used for study. However. it is found that the
expression of the speed of fatigue crack growth will still retain a form as given by eqn (74).
Therefore. the fourth power law of fatigue crack speed at low values of Kmu seems to be
inevitable as long as the Dugdale model for the active plastic zone and the criterion of total
accumulative plastic work are employed.

[n order to estimate the width of the active plastic zone. let us consider the plastic zone
of finite width and employ the following constitutive relation for loading

(80)

where E 1 is the tangentmodllilis. For linear hardening material. the value of E, is a constant.
Since f.,. is the normal strain in the vertical direction in the plastic zone of finite width. it
may be expressed approximately by

(81 )

where WI' is the width or the plastic zone. and i5 is the plastic stretch obtained from the
Dugdale model in which the width of the plastic zone is regarded as zero. An equation
similar to the combination oreQl1s (SO) and (SI) was presented by Rice (1968). Hahn and
Rosenfield (1%5) noted that some met.lls actually reveal a narrow slit-like plastic zone, of
width approximately equal to plate thickness ahead of the crack when the zone is long in
comparison to the thickness of the plate. By comparison of eqns (80) and (81) with eqn
(I), it is found that

1 = 2E.
1'. W.

p

(82)

For 2024-T3 aluminum alloy. £, =700 kg mm - 2. For a given value of ). =300 kg
mm - J. the width of the active plastic zone is found by eqn (82) to be 4.67 mm, which is in
the same order as the thickness of the plate used for fatigue experiments.

The authors of this paper also considered the problem of fatigue crack propagation
under the condition R < O. The reverse plastic zone exists on the negative x-axis. The
contact region extends to - 00 with a constant residual stretch e5 R attached to the crack
surf'lce. They considered an additional reverse plastic zone along the negative x-axis with
different sizes. and used the l-integralto estimate the minimum stress intensity factor Kmin •

However. they always obtained small positive values for Kmln • This implies that the negative
value of R only produces a nominal negative value for Km,n' [n reality. no negative Kmln

exists. The smallest value of R is actually zero as a result of the contact of the crack surface
under compressive remote loading. Hence. the case of R < 0 can be replaced by the case of
R == O. This point of view is in agreement with that proposed by Hertzberg (1983).

In conclusion. this work applies the complex variable technique for the analysis of the
fatigue crack propagation problem. based on the model of strip yielding with a rigid-plastic
linear work-hardening constitutive relation for material in the fracture process zone. The
boundary value problem is governed by a set of integro-differential equations which can be
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solved numerically. The theoretical results obtained here check well with experimental data
for sufficiently large values of Km.... It indicates that the work-hardening characteristics of
material in the fracture process zone plays an important role in fatigue crack propagation.
For small values of Kmv.. the theoretical results approach. asymptotically. the fourth power
law which provides the fatigue crack growth rate always smaller than the experimental
value.
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