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Abstract—This investigation deals with the steady propagation of a fatigue crack in a thin plate,
subjected to cyclic tensile remote loading. The problem is analyzed according to a Dugdale model
of the fracture process zone. Material stretches periodicatly in the fracture process zone prior to its
failure. The effect of crack closure is considered in the analysis. Unlike previous work. our study is
based on a constitutive relation of the linear work-hardening for material in the fracture process
zone. The criterion of total accumulative plastic work is adopted for determination of the growth
rate of the fatigue crack. Theoretical results thus obtained are compared with experimental data.

INTRODUCTION

Prediction of fatigue crack propagation speed under cyclic load is an important and difficult
task in engineering. Several authors have made contributions to this area. For the problem
of fatigue crack growth under tensile loading, Liu (1961) found the crack length increment
per cycle difdN to be proportional to the square of the stress intensity factor range, AK.
McClintock (1963), Rice (1965) and Weertman (1966) found that d//dN could be expressed
as the fourth power of AK, as proposed by Paris and Erdogan (1963) based on an experi-
mental study. Rice (1967) pointed out the existence of a reverse plastic zone in front of a
stationary crack during the unloading process. In the fatigue analysis, the reverse plastic
deformation at the cruck tip can also be induced by unloading. Elber (1970) in his experi-
mental study, discovered the behavior of cruck closure induced by the residual plastic
stretch near the surfuce of the fatigue crack. Newman (1976) studied the behavior of crack
closure by a finite element analysis. He employed an elastic-perfectly plastic model in his
analysis and found that the transient behavior of crack closure was limited in the first few
cycles of oscillation. Budiansky and Hutchinson (1978) first analyzed the steady crack
closure behavior in a quasi-static plane stress problem, based on a Dugdale model of the
fracture process zone with a perfectly plastic constitutive relation. Huang and Li (1989)
also analyzed this problem and studied the speed of fatigue crack propagation d//dN,
based on the criterion of total accumulative plastic work. The problem of fatigue crack
propagation with an in-plane shear mode deformation was analyzed by Lardner (1968),
while the problem with an anti-plane shear mode was investigated by Huang (1988). A
concept similar to the reverse plastic deformation was used in their study.

In this investigation, the criterion of total accumulative plastic work for material failure
is employed with a modification that the effect of work-hardening of material in the fracture
process zone is considered. For convenience of analysis, it is assumed that the constitutive
relation in the fracture process zone can be represented by a linear, work-hardening relation
between the traction on the boundary of the fracture process zone and the stretch of
material prior to its failure. Theoretical results based on this model will be compared with
experimental data.

ANALYSIS OF STATIONARY CRACK

Consider a plane stress problem of an infinite body containing a semi-infinite crack,
subjected to periodic tensile mode deformation. The crack is located on the negative real
axis. as shown in Fig. 1. The stress intensity factor K varies periodically between K., and

865



866 Y. C. Li and N. C. Huanc

Reverse
Plastic Zone

y Fracture
Closed Crack Process Zone

Elastic
Opened Crack -—\ S Unloading Zone

= e X

w

Fig. 1. Geometry of the problem for K = K, 2 0.

Kuin 2 0. When K = K,,,, the crack is opened and there is a fracture process zone of the
Dugdale type at 0 < x < w. The analysis given here is based on the assumption of small
scale yielding. The material in the fracture process zone obeys a rigid-plastic linearly-work-
hardening relation

0,(x) = oy +Ar(x), )

where o, (x) is the normal stress acting on the boundary of the fracture process zone, v(x)
is the vertical displaccment on the boundary, oy is the yiclding stress corresponding to the
residual stress for the transition from a continuum to the fracture process zone, and 4 is
the work-hardening parameter which is regarded as a material constant.

In the strip yielding model, the material outside of the yielding zone is elastic. According
to the Dugdale model, the maximum stress intensity factor at the crack tip during loading

can be expressed by
\[ j. . v(x) (2)
" w - \:

The vertical displacement of the boundary of the fracture process zone is

2 " 2 Kpus /=
U(X) = - ;;—E”J; G'y(t)f(f,.f) d{+2\/;;' T WX, (3)

where E is the modulus of elasticity and f(¢, x) is given by

,/w--t-i-\/‘:—:‘:‘
,/w--f—-,/w--x ’

The stretch in the fracturc process zone is defined by 6(x) = 2v{x).
With substitution of eqn (1) into eqn (2) and employment of the following dimen-

sionless quantities

ft.xy=1In 4)

x t o 20(x) _ 0
5"';;t t"";;':w A(C)‘- 60 . ﬂ—Z{TY}"
3 2. 2K3
@ = - GY“‘ y Kma: (5)

nKi..' 6,«505

eqns (2) and (3) become
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Fig. 2. Crack opening displacement at K = K..

i
A) = -er [1+uA(D]g(r. &) dr+ 27 /0 /1 - ¢, (6)
l+;:A(«f) ]
, (7)
<[

where 8, is the crack opening displacement at the crack tip, i.c. 8y = 6(0) = 20(0), and

-:Ei'\{_.l—f (8)
,/l-—t«-,/l—

With any fixed value of u, A(£) can be solved by eqns (6) and (7). In the solution, the
value of A(t) is expressed by a piecewise linear interpolation function of t such that eqn
(6) can be discretized into a set of linear algebraic equations, from which the value of A(7)
can then be solved if y and w are known. With the use of the solution of A(t), the new value
of w can be determined by eqn (7). By this iterative procedure, the solution of A(r) and w
can be obtained with satisfactory accuracy. The value of y can be determined by the
condition A(0) = I, which involves another iterative process. The numerical results for
p#=0.1,0.2 and 0.3 are shown in Fig. 2. The values of y and w for different values of u are
also tabulated in Fig. 2. The stretch of material in the fracture zone A(&) is found to be
very close to the analytical results

g(t.§) =

T+ /1=-¢
A S [ ;
© {—2¢n —Jisz )

obtained by Budiansky and Hutchinson (1978) for the special case u = 0.
Differentiation of eqn (6) with respect to ¢ gives

f|(§)= -

da@) _ e { §ETI0) VAL (10)

& T fice ¢ \/;,}‘

It can be easily verified that f,(0) = oo and f,(1) = 0. The values of —(dA(&)/d¢) at
K = K., are shown in Fig. 3.
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ANALYSIS OF GROWING FATIGUE CRACK

-

When the stress intensity factor K decreases from K., to K. the opened crack begins
to close. For a further decrease in K, the closed region grows. When K= K, 2 0, the
closed regionisin b € x € 0, where b < 0. There is a reverse plastic zone within the fracture
process zone in 0 € x < «, as shown in Fig. 1. If K, =0, b - — 0. A mixed boundary
value problem of this type can be analyzed by the complex variable technique.

Let the stretch in the fracture process zone at K = K., be denoted by d,,. the stretch
in the reverse plastic zone at K = K, be denoted by J,, and the total residual plastic stretch
at the crack tip be denoted by dx. When the value of K decreases to K, the plastic stretch
in the elastically unloading zone ¢ € x < w has the sume value as that under K = X, duc
to the rigid -plastic behavior of the model (Fig. 4).

Let us study the behavior of material points in the reverse plastic zone. During loading,
the stress-stretch relation at any material point in the fracture process zone is shown by the
line oaB in Fig. 5. When K = K,,,,, the stress and stretch at the material point reach
maximum values at point B. During unloading, the stress in the reverse plastic zone
decreases, but the stretch remains unchanged until the stress reaches point C. When the

30 _Buix)
2

w

oy(x) = gy+Avix)

(a)
dm(x)
S
* ~y
53}2
i
b o t w
Oy(x} = —gy+Av(x)
(b)

Fig. 4. Growing fatigue crack for (a) K = K,,..and (b) K = K, 2 0.
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Fig. 5. Behavior of material points in the reverse plastic zone.

stress reaches point O, compression begins. As the stress reaches point C, the reverse plastic
stretch occurs. If the unloading process continues, both the stress and stretch decrease. This
procedure can be illustrated by the line CD in Fig. S with the relation

0,(x) = —oy+Av(x). (1

When K = K., point D is rcached. As the reloading process starts, the stress-stretch
relation follows the line DA, where the stress increases but the stretch remains constant,
When the stress reaches point A, the behavior of the material point in the reverse plastic
zone will follow a path repeating the process described previously. Therefore, as the crack
grows under a cycle of the periodic loading, the material points in the reverse plastic zone
follow the loop ABCD. Obviously, on the line BC, the stretch is d,,, while on the line AD,
the stretch is 8,,. For the material point at the crack tip, d,, = d, and §,, = dx. The behavior
of material points in (—00,0) can always be described by the line AD, while the behavior
of material points in (&, 1) can always be described by the line BC.

(1) The case K,,., =0

The state at K, = 0 can be analyzed by a boundary-value problem illustrated in Fig,
6. There are dislocations & = &, along (— 00,0), compressive post-yielding stress in (0, a)
and a dislocation § = dy in (a, w). It is expected that |o,| < | —6y+Adx/2] in (— 00,0), with
g, vanishing monotonically as x - —co. It is also anticipated that —oy+46,,(2)/2 <
o, < oy in (a, w). These requirements will be shown later. Finally, the stresses are required
to be bounded. These conditions suffice to determine values of 6, and a.

In Budiansky and Hutchinson’s (1978) work the complex Muskhelishvili potentials
@(z) and Y (z) were used for analysis. The condition for stress continuity across the x-axis
permits an elimination of . Thus stresses can be written in terms of ¢(z). ¢(2) and their
derivatives by

Gy= =Gy + AV
5'5n‘\ X [ r‘SaSg s

o a w

Fig. 6. Boundary values for K = K, = 0.
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o.+0, =2¢(2)+¢ (I, (12)

0y =ity = ¢ D)+ () + (- DF" (). (13)

In the case of plane stress, the displacements » and ¢ in the x- and y-directions satisfy

¢
Es—(utit) = 3-v)¢' ()= (1+0)[¢" () +(= -9¢" (N, 14

where v is Poisson’s ratio. On the x-axis, = = 7 and t,, = du/dx = 0. Equations (13) and
(14) are reduced to

o, =@, +¢_ (15)

and

ov or 4
(5'5)‘<5;) = ploL -4l (16)

Let us define & = ¢’. It follows from eqns (15} and (16) that the following conditions on
& must hold along the x-axis:

D, -d_ =10 for x<0,
O, +D. = —ay+id,/2 0<x<u,
iE doy,
G, ~-D_ = ‘T _d}— a<x<w,
¢, -0 =0 X > w. (7

By means of a technique similar to that given by Budiansky and Hutchinson (1978), the
general solution for the problem of eqns (17) can be obtained :

V2E—a®(z) = — j -Gy A0, (x)/2] —-—»———m dx

4

,/\’(t a) dé,,,(v)
87: . (18)

xX— 87:

[t is convenient to introduce the following dimensionless quantities:

i na

a : (Sw 6,,, ég
= = - b = - = . !9
8 , X “}1 F (0' )‘b AM ‘sq Am 50 ¥ AK ( )

-
-

Equation (18) can be rewritten in a dimensionless form, as

\/c(z-aihgﬂ{—twam(z) vie=0) 4

¢-¢

\/é(é ) 4u@ 4o Be o

2yw dé 2}' )

With the integral
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j veu—s) 5(’ 9 gs = n[\ lC=a) -+ ;-] for C out of (0, 2), Q1

and the requirement that the stresses g, are bounded at { = 0 and 2, eqn (20) yields

I e R )
nla  mp dAw(‘f)
A N N )

Elimination of Ag from egns (22) and (23) leads to

and

f A0 dE + I RPAGLS
2 Jaa Zro b [EE—a)
where f,(£) is given by eqn (10).

With the use of dimensionless quantities in eqn (19), the discontinuity in the potential
F across the x-axis can be written as

n?
5= 29

ni dA. (%)
yw d¢é

F,-F. for 0<é<a. (25)

From eqns (20) and (25), it is found that

\/s(a- &) f2(E) = (5 2)+mt --“«w-w A,(r)dr
1 "/T(t"'a’)« AR
‘";‘&;J; "”;:‘“fn(f)dﬂ-;&. (26)

where f,(&) is defined by

_dAL ()

fz(f) = d¢

@7

Elimination of A, from eqns (22) and (26), with the use of eqn (24) gives

Y Amdr LY fi(nde }
f2(8) = JEa-¢ [ww e | e | (28)
o Jrla—t) (=& T Jrr-a)(z-&)

Equations (24) and (28) are the governing equations of the problem.
It can be shown from eqn (28) that

lim /2(6) = 0. 29
and

lim £3(0) = £i(®). (30)

Hence, the stretch slope at { = « is continuous.
In the contact region (— c0, 0), the boundary value problem becomes
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F,+F*=x:(§!-) for Z<0. Gl

Y

Therefore, use of eqn (20) and elimination of Ag from eqn (22) yield

0, 1él u j O ARG \/— ]
o B — ‘
oy +1‘Hﬂ [i+?€ o t+IEIV T de iy Jy 1+[E] de| for £<0

(32)

It can be shown through eqn (32) that
0,(0)/oy = —1+uA,(0). (33)

Therefore, the stress at & = 0 is continuous.
It can be verified easily by eqn (32) that

lim (f-) =0. (34)
s -% \Cy

The numerical calculation shows that the magnitude of g, from € = 0to § = — oo decreases
monotonically. Hence, the contact stress in (—o0,0) satisifes the condition 0 > a,/oy 2>
4 Ay, or lo] < 1—oy+40/2].

. With the elimination of Ay from eqns (20) and (22), the potential function on the real
axis with 2 < ¢ < | can be written as

;'-z -
F= (t.... - \/ f o tt“"““A (r)dr
1 fE—af' [ ¢ | .
= 5 7 r—-at~—§f‘(t)dt for a<é<l. (35

Thus, in the elastic unloading zone («, 1), the stress can be determined by

. 1
%= S (F, +F)
T

ay
- —(l-—ﬁ—;ﬁ)-%\/é?uﬁ\/a; L a0
—},C;nz\/é?f\/ztié/‘,(z)dz for a<&<l. (36)
It can be verified that
ot (- )L 8
“yajﬂz\/gff\/;—i;r_‘_{fn(f)dr}=—1+;1A,,.(a). 37

Therefore, the stress at & == « is continuous.
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Fig. 7. Boundary values for K = K, > 0.

(i1) The case K,,.,, > 0

The boundary value problem at K., > 0 is illustrated in Fig. 7. It is found that all of
the boundary conditions and the behavior of material points in different regions are the
same as those in the case of K, = 0, except that there is a contact region (b.0) on the
negative real axis. With an introduction of the dimensionless quantities in eqn (19), the
boundary conditions can be written as

F,+F_=0 for &< fi,

F.—F.=0 f<&<o.

Fo+F_ =n{—=1+ul, (5] 0<é<a,

F,-—Fv-—y’:‘d‘;’: a<é<l,

F,-F.=0 &> 1, (38)

where f# = b/w. By means of the technique used by Budiansky and Hutchinson (1978), the
solution of the problem can be obtained, i.c.

'[ (- l+uAm(c)1\/(¢ —PB)é(a~ a:

J (S lf)f(é —a) dA.,(é) dé+ "_(,H.RC). 39)
T 36 dg 2/w

JE=BEC-)F(Q) =

The boundness of the stress g, at { = f§, 0 and a leads to

n 'm—_l_+_;_tAm<s) e [ L@ o @)

" JE=PEE-8) Zyw Ja fé —BECE—a)

fi=—nf'[—l+;‘Am(é)1,/ ”"“ ff,(c) /(’5 PC=2 4. @)
\/(u 0

ql‘

R _ a= {—a
oS TCJ[ | 44, (8)] (é e dé+ — j Y fu(f)df- (42)
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With the use of
ni dA,, ni .

F+*F-=;;)-a?——-;‘-;fz(é) for 0<¢<a,

eqn (39) yields
o (r:—-ﬂ):{ J’—|+uAM(z) [ a—1
PO =T e ) e =B
1 ‘fl(t) T—Z }
g ——-—-(t_ﬁ)tdt 0<é<a

Equations (40) and (44) are the governing equations of the problem.
It can be shown that

lim /(&) = 0
and

l.i.?} f2(8) = fi(a).

Thus, the stretch slope is continuous at E =0 and & = 2,
In the region (f, 0), the boundary valuc is

F,+F. =222 for p<é<o.
Oy

With the elimination of A and R from eqns (39), (41) and (42}, eqn (47) leads to

0.8 _ [lEE-B {_{ r—lwa...(c) [a—t
oy atlél lnko  t+IE Vi@—p)

=+ Vi(t—~f)

T e
It can be shown that
a,(8) = 0,
o, (0)oy = — 14+ ul,(0).

Therefore, the stresses at & = f and ¢ = 0 are continuous,

i
! f ! Ll f,(r)dt} B<é<o.

(43)

(44)

(45)

(46)

(47

(48)

49

(50

In the elastic unloading zone (a, 1), eqns (47) and (48) still hold. With the elimination

of 4 and R from eqns (39), (41) and (42), eqn (47) also yields
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It can be shown from eqn (51) that

o,(@)foy = — 1 +pA,(a). (52)

Thus, the stress at £ = « is continuous.

(i) Numerical results

Equations (28) and (44) can be integrated by means of the Runge-K utta method. Here
the range of integration will start at £ = a with negative increments of £ and will terminate
at £ = 0. The initial values are fy(a) = fi(x) and A, (2) = Ay (2). It is found that the
continuity condition f5(0) = 0 is always satisfied no matter what value a has. Therefore the
values of a have to be determined by eqns (24) and (40).

Unfortunately, the value of £5(&) at any point in {0, 2) depends on the value of A, (&)
in the entire interval. Therefore, an iterative process is necessary for the determination of
A,(). First of all, an initially tricd function for A,,(&) can be assumed. Equations (28) and
(44} can then be solved for the new function, A, (). This iterative process continues until
a prescribed tolerance is reached. This method is found to be so effective that the absolute
tolerance of A,,(€) can be less than 1073 after three iterations. Another iteration is required
for determining o and f. In the case of K, > 0, the values of R can then be found
numerically through eqn (42).

In eqns (28) and (44), some integrands are singular or ill-behaved at t = 0, « and/or
¢. Special techniques such as change of variables, piecewise parabolic interpolation,
Simpson’s rule with unequal spacings, etc. must be employed for evaluation of integrals.

In Fig. 8, the relations between a and f§ for different values of u are shown. The vertical
dashed lines denote the asymptotic lines of the curves as § — — c0. The values of 2 as shown
on the dashed lines correspond to the case of R = 0. The case u = 0 agrees with the results

SAS 17:7-2
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Fig. 9. Stretch in the reverse plastic zone (u = 0).

obtained by Budiansky and Hutchinson (1978). All curves terminate at the origin « = 0
and f§ = 0.

Figures 9-12 show the plastic stretch A, in the reverse plastic zone for different values
of y and R. The solid circles denote the boundaries of the reverse plastic zone for different
values of R. Dashed vertical lines pass through the solid circles. The corresponding values
of a are also indicated on these lines. It can be seen that the stretch slope is continuous at
E=a and & =0 and the length of the reverse plastic zone decreases as the valuc of R
increases.

SPEED OF FATIGUE CRACK PROPAGATION

For any infinitesimal material clement, the total accumulative plastic work (TAPW)
is the sum of the following purts: (i) the crack opening plastic work due to the propagation
of the crack ; and (ii) the accumulative oscillation plastic work induced by the oscillatory
motion of the boundary of the reverse plastic zone in 0 < x < a. The ratio of the TAPW
and the infinitesimal length of the element is regarded as the “density of the total accumu-
lative plastic work™ applied to the material point. The criterion of TAPW states that failure
at a material point occurs as the density of TAPW of the material point reaches a certain
critical value W,.. For fatigue crack propagation, the material point is at the crack tip.
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Fig. 10. Stretch in the reverse plastic zone (u = 0.1).
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The magnitude of the density of crack opening plastic work at a material point increases
gradually as the crack tip propagates toward the material point. This magnitude attains its
maximum value when the stretched length of material in the fracture process zone reaches

a maximum, [tis
ci“ ‘s .
;V| = (fv +). ,) d(). (53)
(3] -

With the usc of dimensionless quantities, the density of crack opening plastic work at crack
tip W, can be expressed as

1
W, = ayd(,J. (14 pA,)dA,
{

. #
=ayoat L4 % |. (54)
2
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Fig. 12. Stretch in the reverse plastic zone (u = 0.3).
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The oscillatory plastic work at a material point is the accumulation of the plastic work
applied to the material point as it moves backward through the entire reverse plastic zone.
For each cycle of oscillation, the crack tip propagates forward by a distance d//dN. Hence,
the plastic work applied to the material point within 0 € x < a through one cycle of
oscillation can be approximated by

AW, =2 -‘;l[ (84 (x) = 6.,()] dx, (55)
dN

where the factor two stems from the unloading and reloading process in each cycle. The
density of the total oscillatory plastic work at the crack tip is therefore

W, =2 Z—; f () —6(9)] dx. (56)
el 0

dy

Note that W, is independent of 4, the coefficient of linear work-hardening, because the
hardening effect will be cancelled in the loading and unloading process. In fact, the quantity
dW,in eqn (55) is the magnitude of the area of the loop ABCD as shown in Fig. §.

The criterion of TAPW requires

Wi+W, =W, (57)
Substitution of eqns (54) and (56) into cqn (57) lcads to

a 2oy __ .
dN "
We=ovdu@| 1+5

J-“ (34(x) = bm(x)] dx. (58)

Use of dimensionless quantitics transforms eqn (58) into

di
a—'[—v' = Gl(&nux)FI(R)v (59)
where
Fy(R) = L [Aw(8)—-AD]d¢, (60)
K2, 0w
GI(Kmux) = 2 . (6])
[m—ayao(l + g)}o’y
The quantity W, in eqn (61) can be expressed as
K?
W,=—
c=z (62)

where K; is called the fatigue fracture toughness. When K., = K., = K, the value of W,
is required to be zero. Thus
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W| = Uyar(l + %f) = Wc’

where ; and y, are defined by

2K?

O = 5o|x-x, = m-

and
é
He = gk, = 2—;;1.

where 7, is defined by

Y= Ykak:

From eqn (63), eqn (61) becomes

Kaud
Gl(Kmu) = . o

a5

With the introduction of the following quantitics :

é

d=-"

)

and

2
_oy(l1+u/2)
[= Kiw L

879

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(m

(1)

the dimensionless speed of fatigue crack growth is then obtained from equations (59) and
(67) as

dr
an = Fika)F2(R).

(73

It is seen that df/dN approaches infinity as K., approaches K;. Let Ak = (K — Koin)/ K-

Equation (73) can also be expressd in terms of Ak and R as
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Fig. 13. F;(R) curves.

dr AK)y? Fy(R
&N.-.: @ax) (!;(R;:' 14
T (1= R)? —m(AK)?
Ye
When &, << 1, the fatigue crack speed can be approximated by
dr .
v = PR, (75)
where
F.(R
Fy(R) = :-*1'(""'")’*'. (76)
L(1-R)
7r

when &, « 1, y/y; approaches a constant. Hence, the fourth power law for the steady speed
of fatigue crack growth is obtained.

Figure 13 shows the relation between Fy(R) and R. When R = 1, the value of Fy(R)
vanishes. When R = 0, the slopes of the curves are equal to zero. This phenomenon is
caused by the constant value of the oscillatory plastic work for R < 0, which is equal to
the value of F,(0) for R = 0. This problem will be discussed later.

For linear work-hardening materials, the relations of the parameters p, y, w with
respect to material constants E, oy, Ky and loading parameters K... R, etc. have no concise
analytical forms. However, their numerical relations can be found empirically. From the
table shown in Fig. 2, it is found that the relation between y and g is nearly linear. Therefore,
y{u) can be written as

|
y(u) = y(0) + 3 7(0.3) ~y(0)]u = 2+0.992u. an

From eqn (5), another relation between y and g is found to be

Kok
usi E’

(78)

-
i

Combination of eqns (77) and (78) leads to an equation for solving u:
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K oy { @/ mm3? )

L]
%0 . 'ork-SOquhnm’
151 v o° = k=0 -

dt
N (mm/kc)

Fig. 14. Comparison of the theoretical fatigue crack speeds with the experimental values for
2024-T3 alloy, oy = 40 kg mm -~ and K; = 130 kg mm ~**

: Kk
0.9924° + 2u— ip = 0. (79)
Y

After uis solved, y and w can be determined by the interpolation according to the numerical
relation as shown in the table of Fig. 2. The value of §, can then be determined by egn (5).
In the special case of K., = K. this method determines the values of py, ¢, wp and d;. With
eqns (68)-(71), F,(k,) can be found. Function F,(R) can be determined numerically by
using Fig. 13. From cqns (72) and (73) the speed of fatigue crack propagation can then be
determined.

As an example, the value of dI/dN is calculated with respect to K,,,,. Our theoretical
speeds of fatigue crack growth are compared with the experimental data given by Brock
(1981) for 2024-T3 aluminum alloy. Material constants are gy = 40 kg mm~2, K; = 130 kg
mm~ 2, E = 7000 kg mm~2 The value of 4 is selected to be 300 kg mm ™. The relations
between d//dN and K., are shown in Fig. 14, where the dashed lines denote the results for.
4 = 0 corresponding to the case of no work-hardening. The solid lines denote the results
for 2 = 300 kg mm . It is seen that the solid lines agree with experimental data better than
the dotted lines as long as the value of K, is not too small. When K, decreases, all solid
lines approach the corresponding dashed lines asymptotically.

Brock (1981) obscrved from the fatigue test of aluminum alloy that the fracture
surface could change from a tensile mode to a shear mode during the growth of a fatigue
crack. A state of plane strain is associated with the tensile mode and a state of plane stress
is associated with the shear mode. Since our theory is based on the assumption of plane
stress, the theoretical results given in this paper check well with the experimental data
corresponding to sufficiently high values of K, where the fracture mode is governed by
the state of plane stress.

DISCUSSION AND CONCLUSION

Rice (1967) pointed out that for most metals, the experimental values of the exponential
constant in the power law for the speed of steady fatigue crack growth lie between two and
four, depending on the portion of d//d N versus Ak curve. However, Weertman (1966) found
that the theoretical prediction based on the TAPW criterion and the Dugdale model always
leads to Paris’ fourth power law of fatigue crack speed at low values of K,,,,. Huang and
Li (1989) proposed that the theory can be improved by considering a model with a
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complicated constitutive relation for the deformation of the fracture process zone. Work-
hardening behavior of material is a possible constitutive relation for the improvement.

The authors of this paper employed a modified Dugdale model by including the effects
of either the cyclic softening or Baushinger effect. They found that these effects merely lead
to a shift of the d//dN versus K, curves in the vertical or horizontal directions. The
modified Dugdale model with linear hardening effect, as employed in this analysis, can alter
the shape of the d//dN versus K., curves for sufficiently large values of K ... When the
value of &, decreases. the d//d N versus K, curves based on our model approach asymptot-
ically those based on the Dugdale model with an ideally plastic constitutive relation of the
fracture process zone. A more complicated and realistic constitutive relation for the material
behavior in the fracture process zone may be used for study. However, it is found that the
expression of the speed of fatigue crack growth will still retain a form as given by eqn (74).
Therefore, the fourth power law of fatigue crack speed at low values of K., seems to be
inevitable as long as the Dugdale model for the active plastic zone and the criterion of total
accumulative plastic work are employed.

In order to estimate the width of the active plastic zone, let us consider the plastic zone
of finite width and employ the following constitutive relation for loading

6, =ay+Ez, (80)

where £, is the tangent modulus. For lincar hardening material, the value of E, is a constant.
Since ¢, is the normal strain in the vertical direction in the plastic zone of finite width, it
may be expressed approximately by

£, = 7 (81)

where I, is the width of the plastic zone, and ¢ is the plastic stretch obtained from the
Dugdale model in which the width of the plastic zone is regarded as zero. An equation
similar to the combination of cqns (80) and (81) was presented by Rice (1968). Hahn and
Rosenficld (1965) noted that some metals actually reveal a narrow slit-like plastic zone, of
width approximately equal to plate thickness ahead of the crack when the zone is long in
comparison to the thickness of the plate. By comparison of eqns (80) and (81) with eqn
(1), it is found that

A=—. (82)

For 2024-T3 aluminum alloy, £, = 700 kg mm 2, For a given valuc of 1 = 300 kg
mm ~’, the width of the active plastic zone is found by eqn (82) to be 4.67 mm, which is in
the same order as the thickness of the platc used for fatigue experiments.

The authors of this paper also considered the problem of fatigue crack propagation
under the condition R < 0. The reverse plastic zone exists on the negative x-axis. The
contact region extends to — oo with a constant residual stretch J attached to the crack
surface. They considered an additional reverse plastic zone along the negative x-axis with
different sizes, and used the J-integral to estimate the minimum stress intensity factor Ko
However, they always obtained small positive values for K. This implies that the negative
value of R only produces a nominal negative value for K,,. In reality, no negative K,
exists. The smallest value of R is actually zero as a result of the contact of the crack surface
under compressive remote loading. Hence, the case of R < 0 can be replaced by the case of
R = 0. This point of view is in agrecement with that proposed by Hertzberg (1983).

In conclusion, this work applics the complex variable technique for the analysis of the
fatigue crack propagation problem, based on the model of strip yielding with a rigid-plastic
linear work-hardening constitutive relation for material in the fracture process zone. The
boundary value problem is governed by a set of integro-differential equations which can be
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solved numerically. The theoretical results obtained here check well with experimental data
for sufficiently large values of K,.. It indicates that the work-hardening characteristics of
material in the fracture process zone plays an important role in fatigue crack propagation.
For small values of K,,,,. the theoretical results approach, asymptotically, the fourth power
law which provides the fatigue crack growth rate always smaller than the experimental
value.
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